静下心来教书,潜下心来育人,专注电子入门技术,打造电子入门教学启蒙网,提供一站式服务!--刘昆山
科教电子制作
下载中心
电阻
电容
二极管
三极管
集成电路
电工基础
模拟电路
数字电路
高频电路
电子制作工具
芯片资料
电子实验
教学问答
PCB设计
PLC教程
家用电器
电子工艺
电视技术
书籍推荐
电子英语
电子视频教程
教育心理学
教学论文
教研论文
教学理论
教学管理
评语大全
职业教育
教育政策
名家思想
人际关系学
您的位置网站首页>>PCB设计>>第二十七篇 高速数字系统的串音控制
责任编辑:刘昆山

  内容:在高频电路中,串音可能是最难理解和预测的,但是,它可以被控制甚至被消除掉。
随着切换速度的加快,现代数字系统遇到了一系列难题,例如:信号反射、延迟衰落、串音、和电磁兼容失效等等。当集成电路的切换时间下降到5纳秒或4纳秒或更低时,印刷电路板本身的固有特性开始显现出来。不幸的是,这些特性是有害的,在设计过程中应该尽量设法避开。
在高频电路中,串音可能是最难理解和预测的,但是,它可以被控制甚至被消除掉。

1、 串音由何引起?
  当信号沿着印刷电路板的布线传播时,其电磁波也沿着布线传播,从集成电路芯片一端传到线的另一端。在传播过程中,由於电磁感应,电磁波引起了瞬变的电压和电流。
电磁波包括随时间变化的电场和磁场。在印刷电路板中,实际上,电磁场并不限制在各种布线内,有相当一部分的电磁场能量存在於布线之外。所以,如果附近有其它线路,当信号沿一根导线传播时,其电场和磁场将会影响到其它线路。根据麦克斯韦尔方程,时变电及磁场会使邻近导产生电压和电流,因此,信号传播过程中伴随的电磁场将会使邻近线路产生信号,这样,就导致了串音。
  在印刷电路板中,引起串音的线路通常称为“侵入者”。受串音干扰的线路通常称为“受害者”。在任何“受害者”中的串音信号都可被分为前向串音信号和後向串音信号,这两种信号部分地由於电容耦合和电感耦合引起。串音信号的数学描述是非常复杂的,但是,如同湖面上的高速快艇,前向和後向串音信号的某些量化特徵还是能被人们所理解。
  高速快艇对水产生两种影响。首先,快艇在船头激起浪花,弧形的涟漪好像随着快艇一起前进;其次,当快艇行驶一段时间後,会在身後留下长长的水迹。
  这很类似於信号通过“侵入者”时,“受害者”的反应。“受害者”中有两种串音信号:位於侵入信号之前的前向信号,像船头的水和涟漪;落後於侵入信号的後向信号,像船开远後仍在湖中的水迹。

2、前向串音的电容特性
  前向串音表现为两种相互关联的特性:容性和感性。“侵入”信号前进时,在“受害者”中产生与之同相的电压信号,这个信号的速度与“侵入”信号相同,但又始终位於“侵入”信号之前。这意味着串音信号不会提前传播,而是和“侵入”信号同速并耦合入更多的能量。
  由於“侵入”信号的变化引起串音信号,所以前向串音脉冲不是单极性的,而是具有正负两个极性。脉冲持续时间等於“侵入”信号的切换时间。
  导线间的耦合电容决定了前向串音脉冲的幅值,而耦合电容是由许多因素决定的,例如印刷电路板的材料,几何尺寸,线路交叉位置等等。幅值和平行线路间的距离成比例:距离越长,串音脉冲就越大。然而,串音脉冲幅值有一个上限,因为“侵入”信号渐渐地失去了能量,而“受害者”又反过来耦合回“侵入者”。 前向串音的电感特性
  当“侵入”信号传播时,它的时变磁场同样会产生串音:具有电感特性的前向串音。但是感性串音和容性串音明显不同:前向感性串音的极性和前向容性串音的极性相反。这因为在前进方向,串音的容性部分和感性部分在竞争,在相互抵消。实际上,当前向容性和感性串音相等时,就不存在前向串音。
  在许多设备中,前向串音相当小,而後向串音成了主要问题,尤其对於长条形电路板,因为电容耦合增强了。但是,在没有仿真的前提下,实际无法知道感性和容性串音抵消到何种程度。
  如果你测到了前向串音,你就可以根据其极性判别你的走线是容性耦合还是感性耦合。如果串音极性和“侵入”信号相同,容性耦合占主要地位,反之,感性耦合占主要地位。在印刷电路板中,通常是感性耦合更强些。
  後向串音发生的物理理和前向串音相同:“侵入”信号的时变电场和磁场引起“受害者”中的感性和容性信号。但是这两者之间也有所不同。
  最大的不同是後向串音信号的持续时间。因为前向串音和“侵入”信号的传播方向及速度相同,所以前向串音的持续时间和“侵入”信号等长。但是,後向串音和“侵入”信号反方向传播,它滞後於“侵入”信号,并引起一长串脉冲。
  与前向串音不同,後向串音脉冲的幅值与线路长度无关,其脉冲持续期是“侵入”信号延迟时间的两倍。为什麽呢?假设你从信号出发点观察後向串音,当“侵入”信号远离出发点时,它仍在产生後向脉冲,直到另一个延迟信号出现。这样,後向串音脉冲的整个持续时间就是“侵入”信号延迟时间的两倍。

3、後向串音的反射
  你可能不关心驱动芯片和接收芯片的串音干扰。然而,你为什麽要关心後向脉冲呢?因为驱动芯片一般是低阻输出,它反射的串音信号多於吸收的串音信号。当後向串音信号到达“受害者”的驱动芯片时,它会反射到接收芯片。因为驱动芯片的输出电阻一般低於导线本身,常常引起串音信号的反射。
  与前向串音信号具有感性和容性两种特性不同,後向串音信号只有一个极性,所以後向串音信号就不能自我抵消。後向串音信号及其反射之後的串音信号的极性和“侵入”信号相同,其幅值是两部分之和。
  切记,当你在“受害者”的接收端测到後向串音脉冲时,这个串音信号已经经过了“受害者”驱动芯片的反射。你可以观察到後向串音信号的极性和“侵入”信号相反。
  在数字设计时,你常常关心一些量化指标,例如:不管串音是如何产生,何时产生,前向还是後向的,它的最大噪声容限为150mV。那麽,存在简单的能够精确衡量噪声的方法吗?简单的回答是“没有”,因为电磁场效应太复杂了,涉及到一系列方程,电路板的拓扑结构,芯片的模拟特性等等。

4、 串音消除
  从实践观点出发,最重要的问题是如何去除串音。当串音会影响电路特性时,你该怎麽办?
你可以采取以下两种策略。一种方法是改变一个或多个影响耦合的几何参量,例如:线路长度、线路之间的距离、电路板的分层位置。另一种方法是利用终端,将单线改成多路耦合线。合理的设计,多线终端能够取消大部分串音。

5、 线路长度
  很多设计者认为缩短线路长度是降低串音的关键。事实上,几乎所有电路设计软件都提供了最大并行线路的长度控制功能。不幸的是,仅改变几何数值,是很难降低串音的。
因为前向串音受耦合长度影响,所以当你缩短没有耦合关系的线路长度时,串音几乎没有减少。再者,如果耦合长度超过驱动芯片下降或上升时延,耦合长度和前向串音的线性关系会到达一个饱和值,这时,缩短已经很长的耦合线路对减少串音影响甚小。
  一个合理的方法是扩大耦合线路间的距离。几乎在所有情况下,分离耦合线路能够大大降低串音干扰。实践证明,後向串音幅值大致和耦合线路间的距离的平方成反比,即:如果你将这个距离增加一倍,串音降低四分之叁。当後向串音占主要地位时,这个效果更加明显。

6、隔离难度
  要增大耦合线路间的距离并不是很容易的。如果你的布线非常密,你必须花很多精力才能降低布线密度。如果你担心串音干扰,你可以增加一或二个隔离层。如果你必须扩大线路或网络间的距离,那麽你最好拥有一个便於操作的软件。线路宽度和厚度同样影响串音干扰,但是其影响远小於线路的距离因素。所以,一般很少调整这两个参量。
  因为电路板的绝缘材料存在介电常数,也会产生线路间的耦合电容,所以降低介电常数也可减少串音干扰。这个效果并不很明显,特别是微带电路  部分介电质已经是空气了。更重要的是,改变介电常数并不那麽容易,特别是在昂贵的设备中。一个变通的办法是采用较贵的材料,而不是FR-4。
  介电质厚度,很大长度上影响了串音干扰。一般的,使布线层靠近电源层(Vcc或地),能够降低串音干扰。改善效果的精确数值需要通过仿真来确定。

7、分层因素
  一些印刷电路板设计者仍然不注意分层方法,这在高速电路设计中是个重大失误。分层不但影响传输线的性能,例如:阻抗、延迟和耦合,而且电路工作易於失常,甚至改变。例如,通过减少5mil的介电质厚度来降低串音干扰,这是不可以的,虽然在成本和工艺上都能做到。
  另外一个容易忽略的因素是层的选择。很多时候,前向串音是微带电路中的主要串音干扰。但是,如果设计合理,布线层位於两个电源层之间,这样就很好地平衡了容性耦合和感性耦合,具有较低幅值的後向串音便成为主要因素。所以,仿真时你必须注意,是哪种串音干扰占主要地位。
  布线和芯片的位置关系对串音也有影响。因为後向串音到达接收芯片後反射到驱动芯片,所以驱动芯片的位置和性能是非常重要的。因为拓扑结构的复杂性,反射及其它因素,所以很难解释串音主要受谁影响。如果有多种拓扑结构供选择,最好通过仿真来确定哪种结构对串音影响最小。
  一个可能减少串音的非几何因素是驱动芯片本身的技术指标。一般原则是,选择切换时间长的驱动芯片,以减少串音干扰(解决很多其它由於高速引起的问题也如此)。即使串音不严格地和切换时间成正比,降低切换时间仍然会产生重大影响。许多时候,你对驱动芯片技术无法选择,你只能改变几何参量来达到目的。 通过终端降低串音
  众所周知,一根独立、无耦合传输线的终端连接匹配阻抗,它就不会产生反射。现在考虑一系列耦合的传输线,例如,叁根互相有串音的传输线,或一对耦合传输线。如果利用电路分析软件,可以导出一对矩阵,分别表示传输线本身和相互间的电容和电感。例如,叁根传输线可能有下列的C和L矩阵:
在这些矩阵中,对角线元素是传输线自身值,非对角线元素是传输线相互间的值。(注意它们是用每单位长度的pF和nH来表示的)。可以用精良的电磁场测试仪来确定这些值。
  可以看出,每一组传输线也有一个特徵阻抗矩阵。在这个Z0矩阵中,对角线元素表示传输线对地线的阻抗值,非对角线元素是传输线耦合值。
  对於一组传输线,与单根传输线类似,如果终端是与Z0匹配的阻抗阵,它的矩阵几乎是相同的。所需的阻抗不必是Z0中的值,只要组成的阻抗网络与Z0匹配就行。阻抗阵中不仅包括传输线对地的阻抗,而且包括传输线之间的阻抗。
  这样的一个阻抗阵具有良好的性质。首先它可以阻止非耦合线中串音的反射。更重要的是,它可以消除已经形成的串音。

8、致命武器
  可惜的是,这样一个终端是昂贵的,而且是不可能理想实现的,因为一些传输线之间的耦合阻抗太小了,会导致大电流流入驱动芯片。传输线和地之间的阻抗也不能太大以致於不能驱动芯片。如果存在这些问题,而你还打算利用这类终端,加几个交流耦合电容试试看。
  尽管实现中存在一些困难,阻抗阵列终端仍是对付信号反射和串音的致命武器,特别对於恶劣情况。在其它环境下,它可能起作用,也可能不起作用,但仍不失为一种值得推荐的方法。

上一页: 第二十六篇 信号隔离技术
下 一页:
第二十八篇 掌握IC封装的特性以达到最佳EMI抑制性能
科教电子制作
邮购指南 教师吧淘宝店关于站长关于教师吧免责声明常见问题招聘人才友情链接给我留言
《教师吧》是一家帮助电子初学者快速入门电子技术的公益性教学网站,专门提供电子技术和单片机技术等入门型学习视频教程和电子制作套件。
我们主张电子初学者采用万能板焊接电子制作产品,因为这种“边学边做”的自学模式,不仅能锻炼焊接技术,还能提高识别电路图和分析原理图的能力。
辅以电子视频教程同步学习,必将为日后维修、设计电子产品打下坚实的基础,帮助您快速跨越电子入门者到电子工程师的门槛。
本站已经获得国家部门认证 国家ICP备案序号: 赣ICP备06004613号 业务客服QQ:56943772 E-mail:56943772@qq.com
电子爱好者群(1):66585281电子爱好者群(2):197874883电子爱好者群(3):29019650 电子爱好者群(4):14454755
版权归刘昆山所有©2005-2025 转载须经本人同意,否则后果自负!本站网址:http://www.jiaoshi8.com
站长:刘昆山 手机:13217080719(刘昆山)副站长:刘星慧  13755545457(刘星慧
欢迎您为本站提供资料,本站资料有的来自网络,如有版权争议,请通知本人,本人将删除之!